
Collaborative Control of Autonomous Cars
Team Members:

John Vitali - jvitali2020@my.fit.edu
Brennan Pike - bpike2020@my.fit.edu

Isaya Danice - inyangira2020@my.fit.edu

Faculty Advisor:
Tom Eskridge - teskridge@fit.edu

Client:
Tom Eskridge, affil. Florida Institute of Technology

Progress Matrix

Task Completion John Brennan Isaya To Do

Collaborative
Control Python File

90% 5% 90% 5% Make human inputs override
AI inputs

Implement Reactive
Dashboard

90% 90% 5% 5% Implement CARLA libraries
for speed calculation &
display

Analyze
“ScenarioRunner”

85% 5% 5% 90% Fix ego vehicle not found
issue, fix tensorflow module
errors.

Implement
Overtaking
Scenarios.

30% 5% 5% 40% Implement overtake python
file and its corresponding xml
file required for scenario
runner.

Analyze Autopilot
Agents

50% 5% 85% 10% Improve the autopilot agents
to respect road safety and find
their destination

Create a New
Viewpoint of
Driver’s Seat

100% 90% 5% 5% None



Tasks Accomplished

Collaborative Control Python File:
Milestone 1’s main purpose was learning the ins and outs of CARLA so that we could

create the actual collaborative control file. This file takes input from the user and input from an
autopilot agent to determine the car’s actual actions. Presently, the way it does this is simple: it
takes both inputs and averages them, with an additional caveat that braking cancels out any
application of throttle. The collaborative control will eventually be more complex; the code is
built so that the combination of control is easy to change without causing unintended issues.

CARLA has two agents for autopilot. One is built to travel to specific destinations, and
isn’t directly wired into the CARLA vehicles; the other is built to travel aimlessly and is more
adaptable because of it. The first agent, due to not being directly wired into the CARLA vehicles,
is easier to use for different purposes (e.g. the collaborative control program), so that is the one
that the collaborative control currently uses. However, it has its own issues, and we may look
into using the other agent to alleviate those issues.

Implement Reactive Dashboard:
In Milestone 1, the plan was to just overlay a simple PNG of a dashboard and have lights

pop up. Upon further investigation and thinking, we decided it would be better if the dashboard
was “reactive.” The thought was to create a first person view of inside the vehicle, which would
show a steering wheel, speedometer, etc. So, the original dashboard was scrapped and version 2
was started on. There were a few bumps in the road; the CARLA system uses its own library for
vehicle, or “actor” data, so creating the dashboard right in the CARLA main program proved
difficult. We decided to take a step back, and go back to the basics. We created a reactive
dashboard in pygame on its own file, which can then be either implemented to the CARLA main
function or can be run as a separate python file like “generate_traffic.py” in the PythonAPI files.

Analyze ScenarioRunner:
In this milestone, we aimed to utilize Scenario Runner, a tool designed for testing

autonomous driving agents within the CARLA simulator environment. Unfortunately, we
encountered issues during the installation and operation of Scenario Runner. We later realized
that the versions were not compatible, we had 0.9.13, which was not compatible with our
CARLA version 0.9.14. So we had to adjust our CARLA version to achieve compatibility and
that meant installing Carla 0.9.13 and building it from scratch. The primary goal of scenario
runner was to help us implement and test the overtaking feature which was one of the
requirements we aimed at accomplishing during this milestone.



Analyze Autopilot Agents:
As mentioned in the section on collaborative control, CARLA has two different agents

used for autopilot. The first agent is imported from a folder of rudimentary autopilot agents. It is
built to travel to a specific destination in a very specific manner. Because of the agent’s dedicated
run_step() method, it is much easier to use and manipulate for collaborative control.
However, its intended route is hardwired, meaning it cares more about staying on its path than it
does about following road laws. As such, this agent will either need to be heavily modified or
replaced.

The most likely candidate for another agent is CARLA’s other autopilot agent, which is
hard-wired into the carla.Vehicle data type. Because it’s hard-wired into the vehicle, it
doesn’t have a dedicated step-running method like the other agent does, making it harder to use
for collaborative control. (It may also need editing to focus on a destination instead of wandering
aimlessly, but if this is the case, it is something that will be considered later in the project.) We
haven’t chosen which of these paths we will pursue yet.

Create a New Viewpoint of Driver’s Seat:
We were also tasked to create another point of view from within the vehicle. This was to

try and enhance the experience of “driving” the car. The default views were the side fender of the
car, on the front bumper of the car, or a 3rd person view of the car. It was fairly simple, all that
had to be done was to create another view within the code and find the correct x, y, and z
coordinates to get the view that was wanted.



Member Contributions

John Vitali:
John’s primary task was to work on the dashboard implementation. In Milestone 1, it was

also his main task, but was unable to complete due to some complications. In Milestone 2, John
continued to work on the dashboard, but decided to restart from scratch. In the original version,
there was an error where the dashboard would open in a new Pygame window, and prevent the
rest of the code in the main function from running. Although an easy fix, it was not to the
standards that it should have been at. The dashboard was restarted from scratch and created in its
own Python file which can then be implemented to the main function or run as its own separate
entity like some of the other files that are used in CARLA.

John also focused on creating a new viewpoint for the driver. It was fairly simple. All that
had to be done was find the code where the viewpoints are made, add a new line for a new
viewpoint, and then find the correct x, y, z coordinates that would position the camera where it
was supposed to be within the car. The car chosen for the viewpoint was the Ford Crown Vic taxi
car because upon further investigation, it was the car that had the most complete interior because
the team is unable to edit the vehicles, or “actors.”

Brennan Pike:
Brennan’s primary focus was on creating the collaborative control program, with analysis

of the autopilot agents as a secondary goal necessary for completing the collaborative control
program. The creation of this program was simple, but required careful edits to already-existing
programs to combine the necessary components. Work on collaborative control will continue into
the next milestone, but the focus will be pivoted to analysis (and likely alteration) of the
autopilot program.

Isaya Danice:
Isaya was tasked with analyzing and installing the Scenario Runner. Once the installation

and compatibility with the CARLA environment was achieved his role was to implement the
overtaking maneuver and create scenarios that would test its efficiency. A first basic approach
would be to utilize carla.TrafficManager and pass a parameter of 100 to its
keep_right_lane_percentage(actor, perc) so that the agent always stays on the right lane. Get
waypoints based on the agent's current location using Carla's inbuilt function get_waypoints()
found in the carla.Map class. Waypoints hold information about the specific lane that they are in,
thus we can check if a lane change based on the current waypoint is allowed using
waypoint.lane_change(). Check if the left lane marking is a broken line then use radar sensors
mounted on the agent to check for any obstacles to prevent collision then implement the
overtaking maneuver. This should have been implemented and tested during this milestone but
unfortunately, we haven't completed it since most of our time was spent in fixing compatibility
and technological issues stemming from the installation phase.



Plan for Next Milestone

Task John Brennan Isaya

Finish Dashboard Implementation and
demo (80-90%)

Testing, plus interface
with collaborative
control, if necessary
(5-15%)

Testing (5%)

Finish Analysis of
Autopilot

Analysis of
hard-wired agent
(20%)

Analysis of general
agent (40%)

Analysis of general
agent (40%)

Refine Collaborative
Control

Testing and demo,
plus additional
implementation if
necessary (40-50%)

Implementation and
testing (40-50%)

Testing (10%)

Adjustments to
Autopilot Agent

Testing and demo
(15%)

Implementation and
testing (50%)

Implementation,
including overtaking
(35%)

Fix Haptic Feedback
Issue with Logitech
G29

Testing and demo
(15%)

Testing (5%) Implementation and
testing (80%)

Discussion

Dates of Meetings with Client
October 3, 2023 - Milestone 1 meeting.
October 17, 2023 - Meeting to show progress on Collaborative Driving & go over a few
necessary programs needed (ScenarioRunner).
October 24, 2023 - Meeting to demo Collaborative Driving & Dashboard. Provide updates on
ScenarioRunner research.

Faculty Advisor Feedback on each Task:
Collaborative Control Python File:

Enter feedback here

Implement Reactive Dashboard:
Enter feedback here

Analyze “ScenarioRunner”:



Enter feedback here

Analyze Autopilot Agents:
Enter feedback here

Create a New Viewpoint of Driver’s Seat:
Enter feedback here

Faculty Advisor Signature: ________________________ Date: ______________



Evaluation by Faculty Advisor
● Faculty Advisor: detach this page and return to Dr. Chan or email scores.
● Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or

write down a real number between 0 and 10)

John
Vitali

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Brennan
Pike

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Isaya
Danice

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Faculty Advisor Signature: ________________________________ Date: ______________


